Diffusive transport of partially quantized particles: existence, uniqueness and long time behaviour

نویسندگان

  • N. Ben Abdallah
  • F. Méhats
  • N. Vauchelet
چکیده

A selfconsistent model for charged particles, accounting for quantum confinement, diffusive transport and electrostatic interaction is considered. The electrostatic potential is a solution of a three dimensional Poisson equation with the particle density as the source term. This density is the product of a two dimensional surface density and that of a one dimensional mixed quantum state. The surface density is the solution of a drift-diffusion equation with an effective surface potential deduced from the fully three dimensional one and which involves the diagonalization of a one dimensional Schrödinger operator. The overall problem is viewed as a two dimensional drift-diffusion equation coupled to a Schrödinger-Poisson system. The latter is proven to be well posed by a convex minimization technique. A relative entropy and an a priori L2 estimate provide enough bounds to prove existence and uniqueness of a global in time solution. In the case of thermodynamic equilibrium boundary data, a unique stationary solution is proven to exist. The relative entropy allows to prove the convergence of the transient solution towards it as time grows to infinity. Finally, the low order approximation of the relative entropy is used to prove that this convergence is exponential in time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence, Uniqueness and Asymptotic behaviour for fractional porous medium equations on bounded domains

We consider nonlinear diffusive evolution equations posed on bounded space domains, governed by fractional Laplace-type operators, and involving porous medium type nonlinearities. We establish existence and uniqueness results in a suitable class of solutions using the theory of maximal monotone operators on dual spaces. Then we describe the long-time asymptotics in terms of separate-variables s...

متن کامل

Existence and uniqueness of positive and nondecreasing solution for nonlocal fractional boundary value problem

In this article, we verify existence and uniqueness of positive and nondecreasing solution for nonlinear boundary value problem of fractional differential equation in the form $D_{0^{+}}^{alpha}x(t)+f(t,x(t))=0, 0

متن کامل

Contractive Metrics for a Boltzmann equation for granular gases: Diffusive equilibria

We quantify the long-time behavior of a system of (partially) inelastic particles in a stochastic thermostat by means of the contractivity of a suitable metric in the set of probability measures. Existence, uniqueness, boundedness of moments and regularity of a steady state are derived from this basic property. The solutions of the kinetic model are proved to converge exponentially as t →∞ to t...

متن کامل

FUZZY FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS IN PARTIALLY ORDERED METRIC SPACES

In this paper, we consider fuzzy fractional partial differential equations under Caputo generalized Hukuhara differentiability. Some new results on the existence and uniqueness of two types of fuzzy solutions are studied via  weakly contractive mapping in the partially ordered metric space. Some application examples are presented to illustrate our main results.

متن کامل

On existence and uniqueness of solutions of a nonlinear Volterra-Fredholm integral equation

In this paper we investigate the existence and uniqueness for Volterra-Fredholm type integral equations and extension of this type of integral equations. The result is obtained by using the  coupled fixed point theorems in the framework of Banach space $ X=C([a,b],mathbb{R})$. Finally, we  give an example to illustrate the applications of our results.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004